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Abstract
This work aims to apply data-driven approach [decision tree (DT) algorithm] to analyse thewear rate
(WR) of ZnO-filled AA7075 composites. The results ofmodel-based analysis was comparedwith
Taguchi analysis. Stir castingwas used to produce the composite samples. Characterization studies
were conducted to analyse the composition andmorphology. The scanning electronmicroscopy
results indicated the even dispersion of ZnO in the AA7075. The energy-dispersive x-ray spectroscopy
pattern ensures the presence ofmatrix elements and the inclusion of reinforcement particles into the
proposed composites. Tominimize the number of experimentation, L27Orthogonal array is used for
findingWR. The ‘DuCom’Pin-on-Disc apparatus were used to prepareWRdata for the set of the
proposed composites. Taguchi technique reveals the optimum level factors for obtaining the
minimum ‘WR’ is reinforcement content of 10wt.%, applied load (P) at 10N, sliding velocity (V) at
1m s−1 and sliding distance (D) of 1000m. The experiments results fromDTalgorithm, and analysis
of variance and signal-to-noise ratio analysis fromTaguchi-based approach confirmed that
reinforcement is the primary element for affectingwear of the composites. The reason for applyingDT
algorithm is that, the low-level knowledge could be converted into high-level knowledge (If-then-else
rules), which can be effortlessly explicable by semiskilled personnel.

1. Introduction

The manufacturing industries always looking for
adopting new technologies that could improve pro-
duction process and quality. The implementation of
artificial intelligence and machine learning will help
the manufacturers to improve the product quality and
optimize the process. Due to the continuous expan-
sion of information technology, the interdisciplinary
field is more attractive to the researchers in applying
their domain knowledge. Data mining (DM), image
processing and fractal dimensions from computer
science domain are the indications of interdisciplinary
approach to apply other domain knowledge to manu-
facturing systems [1]. With the information age, data

sets have become increasingly rich, but the knowledge
contained in the data sets have not been fully utilized
or explored. DM is the amalgamation of machine
learning, databases and statistics. The application of
‘DM’ in the production industry was begun in 1990
and progressively receiving attention to research com-
munity [2]. Piatesky-Shapiro et al [3] reported the DM
is a very useful and emerging area for industry.
Shahbaz and Harding [4] proved that many areas have
been benefited fromDM algorithms inmanufacturing
firms and there are still several fields that may benefit
more. Yong-Hong Kuo and Andrew Kusiak [5]
showed that data had been utilized in production
research in significant ways and they reported that
data-based approach in the production research field
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shifted the research focus from an analytical model to
data-driven model. The analyses of manufacturing
data have been popular in the areas of data-driven
methodologies. Harding et al [6] displayed in their
review paper on application of DM in the production
process, operations, decision support systems and
product quality improvements and they reported that
the identified key parameters could be used to enhance
the quality of the products.

Gardener and Bieker [7] reported that by using
decision tree (DT) algorithms, considerable amount of
time was saved for the manufacturing of semi-
conductors. The task of DM are: Clustering, Classifi-
cation, Association analysis and Regression analysis,
etc [8]. Among these, classification models predict the
categorical class label. For example, a classification
model from bank data set can categorize bank loan
applications as either safe or risky. The derived model
can be represented in the form of If-Then-Else rules.
These rules are simple and easy to understand and can
be applied to new data sets if the accuracy of the classi-
fication rules is acceptable. DT algorithm has the
potential to use other domains due to its simplicity
and robustness.

In recent years, Taguchi method of experimenta-
tion is more attractive to researchers to limit the num-
ber of experiments and producing high-quality
results. It provides a complete and coherent approach
to analyse the process parameters [9]. Hence in this
work, Taguchi-based L27 Orthogonal Array is used to
do experimentation and to examine the wear beha-
viour of the proposed materials. Taguchi method of
experimentation was used to verify the results
obtained byDM.

Aluminium alloys are used in various sectors
owing to their exceptional strength and extraordinary
heat conductivity [10]. However, these alloys display
underprivileged tribological properties leading to pro-
blems in confrontational conditions. To augment the
wear resistance, aluminium and its alloys are rein-
forced with hard or self-lubricating particles such as
SiC, TiC, B4C, MgO, ZnO, TiO2, ZrB2, Al2O3 and gra-
phite etc [11–13]. The aluminium matrix composites
(AMCs) have been developed by various processing
techniques. Among these routes, stir casting is the
proved auspicious techniques for producing AMCs
because of their easiness, suppleness, inexpensive and
appropriate to large quantity fabrication [14, 15].
Poppy Puspitasari et al [16] studied the mechanical
properties in Al-Si alloy with the presence of ZnO par-
ticles and reported that by adding ZnO, the strength
and hardness of the composite have been improved.

Baradeswaran et al [17] analysed the wear behaviour of
AA6061 and AA7075 incorporated with B4C and gra-
phite particles. From the experiments, the authors
concluded that the AA7075 composite has better wear
resistance as compared toAA6061.

The exhaustive available literature revealed that,
AA7075 is a potential alloy in many industries for
making the high performance components such as air-
craft fittings and gears. Hence, in this work, AA7075 is
used. Encouraged by the advantage of machine learn-
ing for manufacturing industries, this work proposes,
the combination of DT andTaguchi approach for ana-
lysing the wear rate (WR) of the composites of
AA7075-ZnO composites. To study the wear beha-
viour, the attributes such as (i) weight percentage of
ZnO, (ii)P, (ii)Vand (iv)Dare considered.

2. Experimental details

AA7075 alloy was chosen as matrix materials, and the
ZnO was used as filler material. The elements of
AA7075 alloy is provided in table 1. The AA7075 ingot
was melted in an electric furnace at a temperature of
850 °C. Themeasured quantities of ZnOparticles were
added into the molten AA7075 to form AA7075-ZnO
composites with altering weight fractions (0, 5 and
10 wt.%) of ZnO. The melt was stirred randomly for
the duration of 10 min. Then the molten metal was
poured into the metallic die and allowed to solidify,
and afterwards the cast was removed. A similar
procedure was repeated to produce the composites
with various wt.% of ZnO. Figure 1 displays the
computer-controlled stir casting setup used for the
synthesizing of unreinforced and reinforced compo-
sites along with a complete work plan. The micro-
structure observation of produced cast samples was
done by scanning electron microscopy (SEM) and
energy-dispersive x-ray spectroscopy (EDS) analyses.

To appraise the sliding wear behaviour of produced
composites, the Pin-on-Disc (POD) test was used. The
sample size of 10mmdia×30mm length of the pinwas
cut from the cast composites by using wire EDM. The
tests were performed as per ASTM G99 standard using
POD wear measuring instruments (DUCOM, Banga-
lore) in dry sliding circumstances. Figure 2 displays the
experimental setup of POD apparatus along with sample
size. EN31hardened steelwas used tomake the discmat-
erial with a hardness of 60 HRC. Initially, the composite
samples were prepared with acetone and the disc was
polished to get a neat surface. The pins were tested as per
the experimental layout, and the mass of each pin was

Table 1.Elements of AA7075.

Element Si Fe Cu Mn Mg Cr Zn Ti Al

Weight (%) 0.4 0.5 1.9 0.3 2.7 0.25 7.1 0.20 Bal
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acquired with an accuracy of 0.0001 g. The ‘WR’ was
computedbyusing equation (1) [18].

r
=

m

D
Wear rate mm m 13( ) ( )/

where m is the loss of materials in pins (g), ρ is the
density of composite specimen (g mm−3) and D is the
‘D’ (m).

The experiments were steered to assess the effects
of control factors on ‘WR’ of AA7075-ZnO compo-
sites. From the extensively available literature studies,
it is observed that there aremany factors that individu-
ally influence theWR of AMCs [19, 20]. In the present
work, four control factors with three levels were

chosen and is provided in table 2. For this exper-
imental work, L27 orthogonal array was applied [21].
Taguchi approach has been used to predict the opti-
mum level of factors for the ‘WR’. The experimental
orthogonal array design, calculated output responses
and their signal-to-noise (SN) ratios are presented in
table 3.

In this work, an effort is made to propose a set of
rules in the form of If-then else from L27 orthogonal
array data set. These rules are easy to understand by
the semi-skilled labour and they can classify or predict
the future data without depending on technical exper-
tise. The different algorithms used for classifications
are (i) Naive Bayes classifier, (ii) support vector

Figure 1. Stir casting furnace used for casting andwork plan.

Figure 2.POD experimental set up.
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machines, (iii) decision trees and (iv) artificial neural
network. The Naive Bayes, support vector machines
and neural network algorithms generate black box
patterns and, therefore, their interpretability becomes
low. Whereas the DT algorithm produces high inter-
pretability. Here the dataset has been converted into
tree structure as per information gain. It is nothing but
the amount of disorder existing in the data set. Quin-
lan [22] created an algorithm for DT named iterative
dichotomizer 3(ID3). The later version of the same is
enhanced version C4.5. It hunts through the attributes
of occurrences in the dataset and selects the utmost
outstanding splitting attributes based on information
gain. DT algorithm provides output as in the tree
arrangement. The high-level knowledge is obtained
from the low-level knowledge. L27 OA was used to
apply the C4.5 algorithm for the newly developed
compositematerials.

3. Results and discussion

3.1.Microstructure analysis of produced composites
The microstructure of the developed composites was
investigated by SEM coupled with EDS. Figures 3(a)–(c)
illustrates the SEM image ofAA7075 andZnO-reinforced
composites. Figure 3(a) display the SEM image of
AA7075 alloy and it is witnessed the nonappearance of
ZnO particles. From figures 3(b) and (c), it can be
witnessed that ZnO particles are equivalently distributed
over the aluminiummatrix. It also reveals that there is no
agglomeration and voids are exited in the proposed
composites because of properly chosen casting para-
meter. The results of EDS analysis of unreinforced
AA7075, and ZnO-reinforced composites is presented in
figures 4(a)–(c), and it is evident that the appearance of
peaks confirms the existence of matrix elements and
reinforcements. From the figures, the high peaks specify

Table 2.Wear control parameters and levels.

Level

Control parameters 1 2 3

Reinforcement (wt.%) 0 5 10

P (N) 10 20 30

V (m/s) 1 2 3

D (m) 1000 1500 2000

Table 3. L27 orthogonal array design, output response and SN ratios.

Sl. no Reinforcement (wt.%) P (N) V (m/s) D (m) WR (mm3/m) SN ratio (dB)

1 0 10 1 1000 0.00294 50.6331

2 0 10 2 1500 0.00343 49.2941

3 0 10 3 2000 0.00386 48.2683

4 0 20 1 1500 0.00318 49.9515

5 0 20 2 2000 0.00367 48.7067

6 0 20 3 1000 0.00441 47.1112

7 0 30 1 2000 0.00514 45.7807

8 0 30 2 1000 0.00477 46.4296

9 0 30 3 1500 0.00465 46.6509

10 5 10 1 1500 0.00266 51.5024

11 5 10 2 2000 0.00309 50.2008

12 5 10 3 1000 0.00254 51.9033

13 5 20 1 2000 0.00327 49.7090

14 5 20 2 1000 0.00315 50.0338

15 5 20 3 1500 0.00290 50.7520

16 5 30 1 1000 0.00347 49.1934

17 5 30 2 1500 0.00363 48.8019

18 5 30 3 2000 0.00381 48.3815

19 10 10 1 2000 0.00179 54.9429

20 10 10 2 1000 0.00143 56.8933

21 10 10 3 1500 0.00167 55.5457

22 10 20 1 1000 0.00215 53.3512

23 10 20 2 1500 0.00239 52.4320

24 10 20 3 2000 0.00269 51.4050

25 10 30 1 1500 0.00335 49.4991

26 10 30 2 2000 0.00359 48.8981

27 10 30 3 1000 0.00287 50.8424
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Al and the minor peaks show the existence of ZnO
particles and other elements of thematrix such asCu, Zn,
Mg and O. It is understood that rise in Zn peaks with a
rise inwt.%ofZnO in thematrix.

3.2. SN ratio andmean analysis
To find the optimum level of wear factors for the
response, SN ratio was performed during the Taguchi
analysis. SN ratio displays the sensitivity of the output
factors to be analysed [23]. A smaller the better SN
ratio was considered for this investigation since the
minimum ‘WR’ for produced composites to be
achieved. The SN ratio and means values for the ‘WR’
are shown in tables 4 and 5. The effect of the control
factors on ‘WR’ is found in the tables by the specified
rank. This rank is assigned by means of delta value
which is computed between the higher and lower value
of the concerned column of parameter. Based on the
rank obtained (tables 4 and 5), the reinforcement wt.%
was indicated as themost predominant factor on ‘WR’
subsequently by ‘P’, whereas ‘V’ was revealed as the
insignificant factor.

Figures 5 and 6 display the main effect plot of SN
ratios and mean values of ‘WR’ with reverence to var-
ious level of control factors. These plots observed the

optimum level of parameters and also describes the
impact of each level of factors on the ‘WR’ of produced
composites. According to figure 5, exposed the opti-
mum level of parameters to obtain the least ‘WR’ of
composites at 10 wt.% of ZnO, ‘P’ at 10 N, ‘V’ of 1 m
s−1 and ‘D’ at 1000m.

In figure 5, it has been revealed that, themaximum
SN ratio of reinforcement content is the primary
dominant factor for affecting the ‘WR’ subsequently
by ‘P’ and ‘D’. In figure 6, it is clearly noticed that the
‘WR’ of unreinforced composite is higher than the
ZnO-reinforced composites. Because the deficient
hardness property of matrix alloy produces more
‘WR’. But the inclusion of ZnO particles AA7075
matrix composites reduce the ‘WR’. It also has been
understood that the ‘WR’ of produced composites
declines with an increase in wt.% of ZnO particles into
the AA7075. The reason is that, the incorporation of
ZnO particles enhance the hardness property and thus
improved the wear resistance of fabricated composite
samples [24]. The variation in ‘WR’ of the tested com-
posites with ‘P’ is shown in figure 6. It clearly stated
that, at low P condition, the less ‘WR’ is obtained due
to the formation of thin oxide layer prevents direct
contact of composite pin surface with the counter disc

Figure 3. SEM image of (a)AA7075-0wt.%ZnO, (b)AA7075-5wt.%ZnO and (c)AA7075-10wt.%ZnO composites.
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surface. With an increase in ‘P’ and ‘V’, the ‘WR’ of
produced composites steadily increases and it is evi-
dent from Archard’s law. While considering the ‘D’,
the higher wear loss is obtained at the maximum ‘D’
conditions.

3.3. Contour plots
Figures 7(a)–(f) illustrate the combined effect of wear
control parameters on the ‘WR’ of tested composite
samples. Figures 7(a)–(c) depict the influence of

reinforcement content on ‘WR’ over the other para-
meters such as (a) P, (b) V and (c) D. It has been
noticed that the higher amount of reinforcements (10
wt.% ZnO particles) produces low ‘WR’ due to high
hardness property. The high level of ‘P’ (30N) and low
level of ‘V’ (1 m s−1) and D (1000 m) give more ‘WR’
because an increase in ‘P’ creates more contact
between the pin surface and disc. Thus, the high
temperature is developed, which results in increased

Figure 4.EDS pattern of (a)AA7075-0wt.%ZnO, (b)AA7075-5wt.%ZnOand (c)AA7075-10wt.%ZnO composites.

Table 4. SN ratio of ‘WR’.

Level Reinforcement (wt.%) P (N) V (m/s) D (m)

1 47.77 52.32 50.49 50.72

2 50.05 50.38 50.19 50.49

3 52.65 48.28 50.10 49.59

Delta 4.87 4.04 0.40 1.13

Rank 1 2 4 3

Table 5.Means of ‘WR’.

Level

Reinforcement

(wt.%) P (N) V (m/s) D (m)

1 0.004139 0.002559 0.003126 0.003099

2 0.003169 0.003090 0.003239 0.003096

3 0.002437 0.003920 0.003267 0.003434

Delta 0.001702 0.001361 0.000140 0.000339

Rank 1 2 4 3
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‘WR’ of composite samples. Figures 7(d) and (e)
demonstrates the influence of ‘P’ on ‘WR’with esteem
to ‘V’ and ‘D’. The higher P (30N)withV from1m s−1

to 3 m s−1 produces the maximum ‘WR’ 0.0042
mm3/m. The ‘WR’ of composites slightly increases
when ‘P’ and ‘D’ are at a moderate level. While
considering the ‘D’with ‘V’ shown in figure 7(f), it was
revealed that the moderate ‘WR’ of 0.0030 mm3/m is
obtained at an initial level of ‘V’ (1 m s−1) and ‘D’
(1000m).

3.4. ANOVAanalysis
Analysis of variance (ANOVA) is a mathematical tool
for assessing the output of the examined experimental
results on a group of independent variables. The
impact of control parameters such as reinforcement,
‘P’, ‘V’ and ‘D’ were identified for the ‘WR’ of
produced composites through ANOVA analysis. Dur-
ing this analysis, the P-value of the factor is less than
0.05, which is said to be the most dominant parameter
on response [25]. ANOVA result and contribution of

Figure 5.Main effect graph of SN ratio for ‘WR’.

Figure 6.Main effect graph ofmean for ‘WR’.
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parameters for ‘WR’ is provided in table 6 and figure 8.
From the table, it was evident that the reinforcement
(P=0.000) and ‘P’ (P=0.000) are the most impact
parameters on the ‘WR’ of fabricated AA7075-ZnO
composites with the contribution of 50% and 31.81%.
The ‘V’ (P=0.735) was the least impact parameter.
Similar findings were previously stated by Alagarsamy
et al [26] during the wear process of AA7075-TiO2

composites. The obtained response values are scat-
tered normally within the limits as shown infigure 9.

Figure 10 displays the interaction of the control
parameters on ‘WR’. This plot provides the informa-
tion about the intersection impact of each parameter
over the others. The parallel lines indicate no interac-
tion between the parameters, whereas the non-parallel
lines indicate the occurrence of interaction between
the selected parameters. Figure 10 shows the interac-
tion of reinforcement with other parameters such as
‘P’, ‘V’ and ‘D’ on the ‘WR’ of fabricated composites. It
has been understood that the creation of parallel lines

Figure 7.Contour plot for ‘WR’ (a) reinforcement vs. P, (b) reinforcement versus V, (c) reinforcement versusD, (d)P versus V, (e)P
versusD and (f)VversusD.

Table 6.ANOVA for ‘WR’.

Source DF Adj SS AdjMS F-value P-value

Reinforcement (wt.%) 2 0.000011 0.000005 51.76 0.000

P (N) 2 0.000007 0.000004 34.29 0.000

V (m/s) 2 0.000000 0.000000 0.31 0.735

D (m) 2 0.000001 0.000000 3.02 0.075

Error 17 0.000002 0.000000

Total 25 0.000022

S= 0.0003224;R2= 91.87%;R2 (adj)= 88.04%;R2 (pred)= 80.99%

8

Surf. Topogr.:Metrol. Prop. 9 (2021) 035005 SAlagarsamy et al



ensures the absence of significant interaction of all the
parameters with reinforcement content.

3.5. Prediction of ‘WR’usingDT algorithm
DT algorithms are termed as trained learning algo-
rithms. It can be implemented to solve the classifica-
tion problems. In the DT approach, the decision rules
are framed from the training data, which is used to
predict the target parameters. In the present work,
reinforcement wt.%, ‘P’, ‘V’ and ‘D’ are used as input
parameters. The response is ‘WR’ which is called as
output parameters. The input parameters are called as
predictor parameters.

The values of ‘WR’ as per L27 OA is provided in
table 7 along with the input parameters. The response
is categorized as low and high in L27 OA. The values
from 0.00143 to 0.00315 are categorized as ‘Low’ and
values above 0.00315 to 0.00514 are categorized as
‘High’. Entropy is a measure of the quantity of impur-
ity available in the data. The entropy equation is pro-
vided in equation (2) as per Claude E. Shannon.

¼ = -
- - -

P P P P P

P P P P

Entropy , log

log log 2
n

n n

1 2 1 2 1

1 2 21 2

( )
( )

The total number of the low attribute is 13 and the
high attribute is 14. Therefore, the information gain
for the class attribute is, as per equation (2):

= - =X XInfo 13, 14
13

24
log

13

27
log

14

17
0.9982 2( )

The info (13, 14) shows the overall entropy function.

3.5.1. Information gain for input variables
(reinforcement wt.%, P, V andD)
Table 8 shows the details of reinforcement wt.% and
information gain values for the reinforcement wt.%.
The calculated number attributes (Low and High) for
reinforcement wt.%, P, V andD are provided in table 8.
Figure 11(a) shows the tree structure for reinforcement
wt.%. The tree structure is constructed from the split
value which is converted from the values in table 8.
From table 8, it is understood that, the attribute ‘0’
providesmaximumgainwhencomparedwith theother
reinforcementwt.%.

Figure 8.Contribution of parameters on ‘WR’.

Figure 9.Probability plot for ‘WR’.
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Figure 10. Interaction plot for ‘WR’.

Table 7. Input and output variable forDT analysis.

Input variables (predictor attributes) Output variable (class attribute)

Instance no. Reinforcement (wt.%) P (N) V (m/s) D (m) ‘WR’ (mm3/m) Categorical attribute

1 0 10 1 1000 0.00294 Low

2 0 10 2 1500 0.00343 High

3 0 10 3 2000 0.00386 High

4 0 20 1 1500 0.00318 High

5 0 20 2 2000 0.00367 High

6 0 20 3 1000 0.00441 High

7 0 30 1 2000 0.00514 High

8 0 30 2 1000 0.00477 High

9 0 30 3 1500 0.00465 High

10 5 10 1 1500 0.00266 Low

11 5 10 2 2000 0.00309 Low

12 5 10 3 1000 0.00254 Low

13 5 20 1 2000 0.00327 High

14 5 20 2 1000 0.00315 Low

15 5 20 3 1500 0.00290 Low

16 5 30 1 1000 0.00347 High

17 5 30 2 1500 0.00363 High

18 5 30 3 2000 0.00381 High

19 10 10 1 2000 0.00179 Low

20 10 10 2 1000 0.00143 Low

21 10 10 3 1500 0.00167 Low

22 10 20 1 1000 0.00215 Low

23 10 20 2 1500 0.00239 Low

24 10 20 3 2000 0.00269 Low

25 10 30 1 1500 0.00335 High

26 10 30 2 2000 0.00359 High

27 10 30 3 1000 0.00287 Low
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= - - =Info 1, 8
1

9
log

1

9

8

9
log

8

9
0.50262 2( )

= - - =Info 12, 6
12

18
log

12

18

6

18
log

6

18
0.91822 2( )

=

+ =

X

X

The combination info 1, 8 , 12, 6
9

27
0.5026

18

27
0.9182 0.7796

(( ) ( ))

=
- =

The gain of attribute reinforcement

Overall gain class attribute 0.998

Combined info of reinforcement 0.7796 0.218

)
( )

( )

The maximum gain value is observed for the attribute
20 when compared with other ‘P’. The same info
(12,6) and info (1,8) are observed as that of reinforce-
ment calculation. Therefore, the overall gain of ‘P’ is
0.218. The tree structure for ‘P’ is shown in
figure 11(b). From table 8, it is observed that attribute
‘1’ provides maximum gain while compared with the
remaining ‘V’. Tree structure for ‘V’ is shown in
figure 11(c).

= - - =Info 4, 5
4

9
log

4

9

5

9
log

5

9
0.9912 2( )

= - =XInfo 9, 9
9

18
log

9

18
2 12( )

=

- =

X

X

The combined info 4, 5 , 9, 9
9

27
0.991

18

27
1 0.997

(( ) ( ))

= - =
The gain of attribute sliding velocity

0.998 0.997 0.001

( )

From table 8, attribute ‘1000’ provides a higher
gain, while comparing to the other ‘D’. The tree struc-
ture for ‘D’ is shown infigure 11(d).
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9

27
0.991

18

27
0.991 0.991

(( ) ( ))

= - =
The gain of attribute sliding distance

0.998 0.991 0.007

( )

Table 9 shows the values of information gain of all
predictor attributes (input variables) along with infor-
mation gain. From the table, it is inferred that the attri-
butes reinforcement and applied load are significant
parameters to decide on ‘WR’. Whereas the sliding
velocity and sliding distance least factor or even it can-
not be considered on ‘WR’. Since the information gain

Table 8.Class attributes for reinforcement wt.%, P, V andD.

Factors Levels No. of low (L) No. of high (H)

Reinforcement wt.% 0 1 8

5 5 4

10 7 2

P 10 7 2

20 5 4

30 1 8

V 1 4 5

2 4 5

3 5 4

D 1000 5 4

1500 4 5

2000 6 3

Figure 11. (a)–(e)Tree structure for reinforcement, P, V,D and reinforcement.

Table 9.The details of information of gain.

Sl. no. Predictor attributes Information gain

1 Reinforcement 0.218

2 Applied load 0.218

3 Sliding velocity 0.001

4 Sliding distance 0.007
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Table 10.Remaining instances after the root node.

Input variables (predictor attributes) Output variable (class attribute)

Instance no. Reinforcement (wt.%) P (N) V (m/s) D (m) ‘WR’ (mm3/m) Categoricalattribute

10 5 10 1 1500 0.00266 Low

11 5 10 2 2000 0.00309 Low

12 5 10 3 1000 0.00254 Low

13 5 20 1 2000 0.00327 High

14 5 20 2 1000 0.00315 Low

15 5 20 3 1500 0.00290 Low

16 5 30 1 1000 0.00347 High

17 5 30 2 1500 0.00363 High

18 5 30 3 2000 0.00381 High

19 10 10 1 2000 0.00179 Low

20 10 10 2 1000 0.00143 Low

21 10 10 3 1500 0.00167 Low

22 10 20 1 1000 0.00215 Low

23 10 20 2 1500 0.00239 Low

24 10 20 3 2000 0.00269 Low

25 10 30 1 1500 0.00335 High

26 10 30 2 2000 0.00359 High

27 10 30 3 1000 0.00287 Low

Figure 12.Tree structure for (a)Reinforcement wt.%, (b)P, (c)V, (d)Dand (e) information gain for P.

Figure 13.Decision tree for L27Orthogonal array.
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of reinforcement and applied are equal any one can be
taken as root node. Let take reinforcement as a root
node. The tree structure is shown infigure 11(e).

The rule derived from the root node is:

If reinforcement is�0, the wear rate is
‘High’ –Rule (1)

The left side of the tree cannot be split further,
hence it is called ‘leaf node’. Whereas in the right side
of tree, it can be possible to split further, hence it is
called as ‘growing node’. The rule derived from the leaf
node is ‘if reinforcement is�0, the ‘WR’ is High’. The
above rule correctly classifies the instances no.1, 2, 3,
4, 5, 6, 7, 8 and 9 and incorrectly classifies the instance
no.1 in table 10. Therefore, the accuracy of the tree
is 88.88%.

3.5.2. Construction of sub node
The instances 1 to 9 are removed and the remaining
instances are shown in table 10.

For remaining instances, once again information
gain of both input and output variables are calculated.
The tree will be processed recursively. The informa-
tion gain of the class attribute is calculated as follows:
Total number of Low−12; Total number of High−6;
Therefore,

= - - =Info 12, 6
12

18
log

12

18

6

18
log

6

18
0.9172 2( )

Information gain of input variables (reinforcement wt.
%, ‘P’, ‘V’ and ‘D’)

Table 10 shows the number of class attributes (low
and high) for corresponding reinforcement wt.%, P, V
and D. The attribute ‘10’ provides maximum gain.
Figure 12(a) displays the tree structure for reinforce-
mentwt.%.
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log

7

9

2

9
log

2

9
0.7632 2( )

=The combined info 5, 4 , 7, 2 0.877(( ) ( ))
= -

=
The gain of attribute reinforcement 0.917 0.877

0.04

( )

In table 10, attribute ‘20’ provides maximum gain
while comparing other ‘P’. The tree structure for ‘P’ is
shown infigure 12(b).

=Info 11, 1 0.413( )
=Info 1, 5 0.6498( )

=The combined info 11, 1 , 1, 5 0.4918(( ) ( ))
= -

=
The gain of attribute applied load 0.917 0.491

0.4251

( )

From table 10, attribute ‘1’ provides maximum gain
while comparing to the other ‘V’. The tree structure
for ‘V’ is shown infigure 12(c).

=Info 7, 5 0.9798( )
=Info 5, 1 0.6498( )

=The combined info 7, 5 , 5, 1 0.8698(( ) ( ))
= -

=
The gain of attribute sliding velocity 0.917 0.8698

0.0472

( )

From table 10, attribute ‘1’ provides maximum
gain while comparing to the other ‘D’. The tree struc-
ture for ‘D’ is shown infigure 12(d).

The info (5, 1) and info (7, 5) are the same as that of
the ‘V’ calculation. Therefore, the overall gain of ‘D’ is
also the same as that of ‘V’.

The gain of the attribute (‘D’)=0.0472.
From the information gain, it is understood that

‘P’ possessmaximum gain. The tree structure is shown
infigure 12(e).

The rule derived from the above tree is:

If applied load is�20 wear rate is
‘Low ’

else wear rate is ‘High’ –Rule (2)

The above rule correctly classifies all the instances
nos except instances no. 13 and 27. Since both sides of
the tree are not possible to grow further, tree forma-
tion is stopped. The final decision tree is shown in
figure 13.

The decision rules are:

If reinforcement is�0, the wear rate
is ‘High’ –Rule (1)

If reinforcement is>0 and Applied
load is�20wear rate is ‘Low ’

else wear rate is ‘High ’ –Rule (2)

The above rules correctly classify all the instances
nos except instances nos 1, 13 and 27.

=Theaccuracyoftreeis
24

27
88.88%

From the DM approach, it is understood that both
the reinforcement wt.% and ‘P’ are the significant fac-
tors (both having equal information gain as shown in
table 9) for the prediction of ‘WR’ for this composi-
tion. The application of the DM algorithm showed
that the low-level knowledge of data is converted in the
form of high-level knowledge (if-then-else rules).
From this high-level knowledge (if-then rules), even
the semi-skilled workers can also classify the data and
predict the responses and in this case, it is ‘WR’ of the
newly developed compositematerial.Whenwe look at
the results of previous researchers’ who reported for
the optimization of wear behaviour of the composite,
the present results are well agreed with previous find-
ings. Baradeswaran et al found the optimum condi-
tions for minimum ‘WR’ for hybrid composites. They
noticed that ‘P’ is the predominant factor for influen-
cing the ‘WR’ of the composites [27]. Similarly, Bas-
karan et al used the Taguchi technique to find the
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significant factor for the ‘WR’ and reported that, load
and sliding velocity is the highly noteworthy factors on
the ‘WR’ of the TiC in situ AMCs [28]. Furthermore,
numerous statistical methods such as the Taguchi
technique, Grey relational analysis, response surface
methodology, Genetic algorithm, particle swarm
optimization and teaching-learning-based optim-
ization techniques are being used to optimize the wear
parameters of aluminium-based composites. How-
ever, they reported that, ‘P’ is the significant parameter
to affect the ‘WR’. These results are well agreed with
the present result arrived from ‘DT’ approach. Hence
we conclude that ‘DT’ can be effectively used for the
analysis of wear parameters of aluminium-based
composites.

4. Conclusions

• AA7075 matrix filled with varying weight percen-
tages (0, 5 and 10 wt.%) of ZnO particles were
effectively fabricated by using the stir casting route.

• The SEM micrograph reveals the microstructure of
the produced composites and it ensured the even
spreading of ZnO reinforcement particles over the
AA7075 matrix. It is also observed that there is no
agglomeration and voids are exited in the proposed
composites.

• The EDS pattern approves the occurrence of matrix
elements such as Cu, Zn, Mg and O and ZnO
particles into the developed composites. It is also
understood that rise in Zn peaks with the rise in
weight percentage of ZnO in thematrix.

• The DT algorithm from machine learning and
Taguchi approach was applied to analyse the effect
of wear control parameters on the wear rate of
produced composites.

• The main effect plot shows that the reinforcement
content of 10 wt.%, ‘P’ of 10 N, ‘V’ of 1 m s−1 and
‘D’ at 1000mproduce the less wear rate of fabricated
composites.

• From S/N ratio, it is observed that reinforcement is
ranked first for causing wear of the proposed
composite followedwith ‘P’, ‘V’ and ‘D’.

• The contribution plot of ANOVA showed that
reinforcement contributed 50%, ‘P’−31.81%,
‘D’−4.5% for causing wear and there is no effect
by ‘V’.

• DT algorithm on the wear data set of the proposed
composite showed that the information of gain of
reinforcement and ‘P’ are the same and it is very
minimum in the case of ‘V’. From the decision rules
derived, it is understood that the primary element

for causing wear is reinforcement and followed
with ‘P’.

• The advantage of machine learning for the predic-
tion of wear is that, the ‘WR’ of the composite can be
identified from ‘If-then-else’ rules. From these
rules, even semi-skilled labour can identify ‘WR’
fora particular parameter. The results from S/N
ratio and ANOVA confirmed the results of the
machine learning algorithm. These rules are suffi-
cient to classify the future composite without any
effort where it is not possible for othermethods.

Data availability statement

All data that support the findings of this study are
includedwithin the article (and any supplementaryfiles).
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